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The slow motion of a body in a viscous shearing field is examined. Variational 
principles are used to derive inequalities which approximate the elements of the 
shearing matrix M of a body of arbitrary shape, where M is the matrix relating 
the force, torque and stresslet exerted by the body on the fluid to the relative 
translational and rotational velocities of the body and the rate of deformation of 
the undisturbed linear field. An upper bound for the elements of M is obtained by 
showing that the quadratic form of M increases monotonically with B, the region 
occupied by the body, while a lower bound for this form is given in terms of the 
electrostatic properties of a conductor and a dielectric of the same shape as B. 
Particular attention is paid to bodies of revolution, for which certain more 
definitive results are obtained: for example, their resistance to a rotation with 
axial symmetry is always less than twice their resistance to a rotation perpen- 
dicular to their axis. 

1. Introduction 
Exact analytic solutions to the Stokes equations, which describe creeping 

motions of bodies in a viscous fluid, are known for very few body shapes. This 
situation results from the difficulty of satisfying the boundary conditions in cases 
where the boundary does not form a co-ordinate surface of one of the few ortho- 
gonal co-ordinate systems for which the equations are separable. Recently, 
Youngren & Acrivos (I  975) developed a numerical technique for solving these 
equations based on the fact that the problem of determining the slow viscous 
flow of an unbounded fluid past a solid particle can be formulated exactly as a 
system of integral equations of the first kind for a distribution of Stokeslets over 
the particle surface. I n  general, the quantities of primary interest are the force, 
the torque and the force dipole exerted by the body on the fluid, which, under 
creeping-flow conditions, are linearly related to the parameters of the un- 
disturbed field. The coefficients in this relation comprise the elements of a 
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shearing matrix M (Brenner & O’Neill 1972; Hinch 1972), which provides, in 
addition, the contribution of the body to the bulk stress tensor (see Batchelor 
1970 for its definition) and thereby the rate of viscous dissipation arising from the 
presence of the particle. Knowledge of the shearing matrix also allows one to 
compute the motion imposed on a freely suspended body by a linear shear flow. 

Although, in principle, M can be found numerically using the scheme proposed 
by Youngren & Acrivos (1975), such an approach becomes cumbersome for bodies 
of irregular shape. It is worthwhile, therefore, to develop methods for obtaining 
ab initio estimates for the elements of M, as well as methods for predicting how 
these are altered by a change in the geometry of the particle. In this way, for 
example, it is possible to determine M numerically for a class of bodies having 
simple shapes, and then to use the results below to arrive at approximate values 
for its elements corresponding to other geometries. 

It is our aim here to present variational techniques for estimating the elements 
of the shearing matrix. The analysis will deal with problems involving bodies 
of arbitrary shape, with special attention given to bodies of revolution. 

Maximum and minimum principles of entropy production and energy dissipa- 
tion in Stokes flow and similar problems have been discussed by Helmholtz 
(1868), Korteweg (1883), Hill & Power (1956), Kearsley (1960), Keller, Rubenfeld 
& Molyneux (1 967) and Weinberger (1 972). Many studies have been concerned 
with obtaining bounds on the mass and momentum transport coefficients of 
suspensions (Prager 1963; Hashin 1969; Keller et al. 1967). 

In  order to identify the interesting parameters, we discuss in $2 the hydrody- 
namic problem for a body in an ambient linear field, the structure of the shearing 
matrix and its relation to the free-suspension problem. In $ 3  we derive two basic 
bounds for the shearing matrix. The first stems from a monotonicity property 
which is proved for the quadratic form of M, and the second is obtained in terms 
of the electrostatic capacity and polarization tensor associated with the body. 
The inequalities of $ 3  are applied in 334 and 5 to various special linear flow 
fields which give rise to various principal minors of the shearing matrix. We obtain 
thereby an isoperimetric inequality for the average rotation resistance of the 
body and various inequalities for the eigenvalues of the tensors comprising the 
diagonal of M. Particular attention is paid to bodies of revolution. Results for 
some examples involving two tangential spheres of different sizes are computed. 

2. The motion of a body in a viscous fluid 
Consider a rigid body B with boundary B moving in an infinite domain. The 

body moves with a translational velocity U; and rotates about a fixed origin 0 
with angular velocity Sz;. The domain D, which is the complement of B, is filled 
with viscous incompressible fluid which has velocity 

uOi = Uoi+eijxj +e i jkwjxk  (2.1) 

at infinity. Here xi is the position vector with origin at  0, U& is a constant transla- 
tion, eii is the constant rate-of-strain tensor and 2wi is the constant vorticity of the 
undisturbed flow. The summation convention is used throughout the paper and 
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the Stokes approximation is assumed to be valid. Since we are considering only 
incompressible flows, eij must satisfy the condition ekk = 0. The flow field in D 
is formulated as 

where ui is the disturbance velocity field caused by the presence of the body. 
Here ui and the pressure disturbance p satisfy the Stokes equations 

(2.2) u; = uoi +?hi, 

and the boundary conditions 

(2.4) 
ui = + eiik Q ~ X ,  - eij  xi on B, 

ui,p +- 0 at CQ, 

and the stresslet Sij (see Batchelor 1970) exerted 
where ui = u;-uoi, Qzi = Q;-w i. 

The force 4, the torque 
by the body on the fluid are defined by 

where ni is the inward normal on B.  Far from B the disturbances in the pressure, 
velocity and stress have asymptotic forms (Batchelor 1970) whose leading terms 
are directly related to the integral quantities 4, % and Xii: 

( si, xi + Si, X i )  X k  xi xj x, x, x ( -  r5 + 6 - )  r7 +.... (2.10) 

The linearity of (2.3) and (2.4) implies that 4, 
and eij  by a linear relation of the form 

and Sij are related to q, Qi 

(2.11) 

in which the ninermaterial tensors Ai,, etc., comprise the shearing matrix M 
for the body. If we define the 15-component vectors 

S = {Fi, T,, Xi,}, 42 = {q, Qi, eij> 
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the relation (2.1 1 )  becomes 
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9 = pM%. 

It was shown by Hinch (1972) that the matrix M is symmetric and positive 
definite as long as one deals with eij which are symmetric and for which eii = 0. 
In order to define M uniquely for all eij and to keep it positive semidefinite and 
symmetric, we define M% to be zero when Uf = Q, = 0 and eii is either skew 
symmetric or equal to Ji j .  We further require that the Sij in 9 be always sym- 
metric and have Xii = 0. 

These normalizations mean that 

Q& = R;,, = Ci jkk  = 0, 

and that At ,  = A k i ,  Bik = Bki, 

Cijkl = Cjikl = Ci j lk  = Cklii, D;k = DAi, 
Q'!. t i k  = Q!. 1ak - - QLij, R .  23k = R;ik = RLij. 

If one knows the quadratic form % . M% for traceless symmetric eij, one obtains 
9. M a  for a general eij with the above normalization by repIacing eij by 

i ( e i j  + eji) - Qekl, Stj. 

The quantities Q, and Sij in (2.11) depend, of course, on the particular 
choice of the origin 0. 

Of special interest are bodies of revolution. If the origin is chosen to lie on the 
axis of symmetry of such a body and if p ,  is a unit vector in the direction of the 
axis of symmetry, the elements of the shearing matrix take the simple forms 

1 (2.12) 

where the scalar coefficients a,, b,, c,, d,, qi and ri depend only on the geometry of 
B and the choice of the origin 0. 

A problem of great interest is that of a freely suspended body. For such a 
body the velocity Ui and angular velocity Q, produced by a linear flow a t  infinity 
are determined from the fact that the force F, and the torque Ti are zero. The 
vectors and Qi are therefore found by solving the first six equations in (2.11) 
with l?, = = 0. We thus obtain the velocity and angular velocity 
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where the matrix E, a;.,. 

is the inverse of A,, Db 

(CZj F,J 

( Dij Bii) ' 

Thus if the shearing matrix M is known, the coefficients in the relation (2 .13)  
and hence the motion of a freely suspended body in a shearing field can be deter- 
mined. 

If B is axially symmetric about an axis which passes through the origin in the 
direction of the unit vector p i ,  so that M has the form (2 .12 ) ,  then (2 .13)  be- 
comes 

& = {Y(iSikP1 f i'ilpk -Pip/&) f p(PiPkP1- &Pi kl ) I e k z ' }  
Q2i = ib(€ijkPjPl f €ijlPjPk) ekl, 

( 2 .14 )  

where 

The constants y ,  p and b have direct physical interpretations. If one takes the x3 
axis as the axis of symmetry, so that pi  = Si3, then the axially symmetric shear 
e33 = I ,  ell = e22 = - 4 produces axial translation 

ui = pai3, Qi = 0. 

On the other hand, the two-dimensional shear eij = SilSj3 + Si38fl produces the 
motion 

& = ySi1, Qi = - bSi,, 

which represents an instantaneous rotation about the axis x1 = 0, x3 = y / b  with 
angular velocity b.  

We recall that, if the co-ordinates are fixed in space, the vector pi along the 
axis of symmetry satisfies the equation 

dpi/dt = % j k ( Q j  f Wj)Pk = b(eikPk- eklpkPlpi) +%jk@jPk, 

which is the same as t'hat of an ellipsoid of revolution of aspect ratio 

{( 1 - b ) / (  1 + b)}*, provided that I b I < 1. 

The motion of such an ellipsoid in a simple shear has been found by Jeffery 
(1922) .  Bretherton (1962)  found the motion of a general body of revolution in an 
arbitrary uniform shear flow. In particular, he showed that there are bodies for 
which IbJ > 1 ,  and that the behaviour of such a body in a simple shear is quite 
different from that of an ellipsoid. 

In  general the body B also undergoes a translation relative to the fluid. How- 
ever, when B is symmetric about the plane x3 = 0, the constants /3 and y are 
zero, so that no relative translation occurs a t  the origin. 

We note that the C,,, do not enter the coefficients of (2 .13 ) .  However, as we 
shall see, our approximations for the elements of Qifk and Rijk will require a 
knowledge of the elements of CiirCl. 
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3. Some general bounds 

with (2.4).? We define the positive semidefinite symmetric bilinear functional 
We begin by deriving the Helmholtz minimum principle for the problem (2.3) 

n 

€or smooth vector fields v and w in D which vanish sufficiently rapidly at infinity. 
Consider any smooth vector field v which, satisfies the conditions 

If ui is the solution of the problem (2.3) with (2.4), the condition vUli = 0 together 
with an integration by parts shows that 

n P 

Since vi = ui on B, we see that 

Then by Schwarz’s inequality 
E(v, u) = E(u, u). 

or (3.3) 

We see from (3.2) that E(u, u) is the work done on the fluid by the boundary 
if the flow velocity is u. Thus E(u, u) is the rate of dissipation of energy for the 
flow field u. The inequality (3.3) states that among all motions which satisfy the 
boundary conditions and the incompressibility condition, XtokesJlow minimizes the 
dissi(pationfunctiona1 E(v, v). This is the Helmholtz (1868) principle. 

Next, if we substitute the boundary values v, = ui = q + ((?ijk fii - eik) xk 
in (3.2) and recall the definitions (2.5)-(2.7), we see that 

E(u, u) = L$& + Oi T, + eij 8, - 2p I B I eii eij, 

where IBI denotes the volume of B. Hence, when eii = eji and eii = 0, we have 

42. M a  =,~u-~E(u,u)+2JBJe,~e~~.  (3.4) 

We shall use this identity and the Helmholtz principle to prove the following 
monotonicity theorem. 

THEOREM 1. 
Let B* and B be two bodies with boundaries B* and B and complementary 

domains D* and D respectively. Let the solutions to the boundary-value prob- 

f These are derived for smooth fields and boundaries. The extension to fields and boun- 
daries which are not smooth is discussed by Weinberger (1972), whose notation we shall 
follow. 
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lem (2.3) with (2.4) with the same ?&, sZi and eii be u; and ui respectively. If 
B* contains B, then the corresponding quadratic forms satisfy the inequality 

(3.5) 
so that the difference matrix M* - M is always positive semidefinite. (Starred 
quantities refer to B".) 

Proof. Because of our normalization of M, we need to prove the inequality only 
when eii = eji and e,Li = 0. 

Let wi be u: in D* and U, + eijk Cli xlC - eij xi in D - D*. By (3.3) and (3.4) 

% . M e  =~~-1E(u,u)+21Blei je i i  < p-1E(v,v)+2]BIeijeii 

%. M% G %. M*%, 

We shall discuss particular corollaries of this theorem in the following sections. 
We have used the Helmholtz principle to show that the quadratic form of the 

shearing matrix M is a non-decreasing functional of B .  This quadratic form can 
therefore be estimated from that of the shearing matrix of another body contained 
in B (or containing B),  which provides a lower (or upper) bound. In  many cases, 
however, this procedure may prove ineffective. To obtain a lower estimate for 
such cases, we shall make use of various functionals from the theory of electro- 
static potentials. Since these functionals depend only on the solution of Laplace's 
equation, they are easier to estimate than the elements of M. 

To this end, consider the scalar and vector potential fields # and ${which are 
the solutions of the boundary-value problems 

(3.6) 

(3.7) 

I #,ii = 0 in D, 
$ = I  on B, $ 3 0  as r - f m  

$,=xi on B, $ $ + o  as r+m. 

and $. a.33 . . = O  in D, 

The electrostatic capacity C is defined by 

and it follows from the divergence theorem that 

# = Cfr+O(r-2) as r -+ co. 
Another important parameter is the centre gi of the equilibrium charge dis- 
tribution, which is defined (see Sehiffer & Szego 1949) by 

Integration by parts, the definitions of C and gi, and the boundary conditions 
# = 1 and $, = xi show that 
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That is, the harmonic function $$ - gi$ not only vanishes at  infinity but has zero 
flux. Therefore 

A third useful quantity is the polarization tensor pij ,  which is defined by 

$i = gi$ +O(r-2) as r + co. (3.9) 

We now observe that, since ui is solenoidal, 

Since each nj alax, - ni alax, represents a tangential derivative on the boundary, 
we can evaluate the integral on the right by substituting the boundary values 
( 2 . 4 ) .  In this way we find that 

Hence, we see from (3.4) that 
n 
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THEOREM 2 .  
Except in the trivial case Ui = Qi = g(e ,  + e j i )  - Qekk& = 0,  equality in (3.14) 

can only hold if the motion is perpendicular to some constant vector ci at 
all points in D, leaves the point gi fixed and satisfies the inequality 

$(ei j  + e j i )  (e i j  + e j i )  - 3ei ie j j  < 2Ri Qi. (3.15) 

Moreover, if eij = 0, equality holds if and only if B is axially symmetric and the 
boundary motion Ui + eiik Rjxk represents a rotation about the axis of symmetry. 

Proof. We assume without loss of generality that eij = eji and ekk = 0. 
By Dirichlet's principle, equality in (3.13) holds if and only if each component 

ui of the solution of (2.3) with (2.4) is harmonic; that is, if and only if 

ui = V, Q, + cijk Qi $k - eik $k.  (3.16) 

The function on the right satisfies all the conditions of (2 .3)  and (2.4) withp = 0 
except possibly the divergence condition. Thus, equality holds in (3.14) if and 
only if the right-hand side of (3.16) is solenoidal; that is, 

q,Q, ,i + cijk Q j  $k,i-  e ik  $k,i = 0. (3.17) 

Expanding in spherical harmonics, we see from (3.9) that there exist constants 
uij such that 

Hence the condition (3.17) can be written as 

$$ = giQ, +olijxjr-3+O(r-3). 

(q + (eijk Q j  - eik) gk}  Q,,i + (cijk Q j  - eili) ukz(xz/r3),i + O ( Y - ~ )  = 0. 

Since Q, , a  . = - ~ ( ~ ~ / ~ 3 )  + o(r-3), 

we see that we must have 
q + (eijk Qj - eik) g, = 0. (3.18) 

That is, the point gi is a t  rest under the prescribed motion. Moreover, equating 
the terms of order r3 to zero, we find that 

{(crnjk Q j  - enzk) ~ k r n  ail - 3(cijk Q j  - eik) "kJxixt = 0 

for all xi. This implies that the coefficient matrix is skew symmetric, so that 

for some A. 

harmonic expansion of $i shows that 

(cijk Qj - eik) akz + (czjk Rj - ezk)  uki = Asil (3.19) 

An application of the divergence theorem to  (3.10) together with the spherical- 
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so that 

Therefore the matrix aii is symmetric and positive semidefinite. 
We rotate co-ordinates so that aii is diagonal. If one of the diagonal elements 

is zero we see from (3.19) that h = 0. If the diagonal elements of aij are all positive 
and h + 0, we see from (3.19) that the diagonal elements of the matrix eiik Qi - eik 
all have the same sign. Since the trace of this matrix is zero, this is impossible. 
Thus the constant h in (3.19) must be zero. 

It can be shown (Weinberger 1973) that a t  most one of the diagonal elements 
of aii is zero. It follows that, in the co-ordinate system where aii is diagonal, the 
diagonal elements of eii are zero, while 
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aij = (4n)-1&+ IBISii>. 

with similar expressions for e13 and eZ3.  The inequality (3.15) follows immediately. 
It also follows from the form of eij  when aij is diagonal that the matrix 

eijk Qj - eik must have the form 

eijk Qi - eik = aipep~kmq,  

where the vector mq is the solution of the system 

(akk& - aii) mi = 2Qi. 

But since the matrix eqpkmq is skew symmetric, its determinant is zero. Therefore, 
there exists a non-zero constant vector ci such that 

ci(eiik Qi - eik)  = 0. 
Since, by (3.16) and (3.18), 

ui = ( C i j k Q j - e i k )  ( ~ J c - h k ) ,  

we see that ciui = 0. This proves the first statement of the theorem. We also 
note that the above expression for ui implies that ui = O(+) as r --f co on account 
of (3.9). Thus it follows that, for equality in (3.14), there must be no net force 4 
on B. 

Suppose now that eii = 0. If Qi is also zero, the fact that the velocity vanishes 
at gi shows that = 0. This is the trivial case. If eii = 0 but Qi + 0, then clearly 
ci = Qi. By (2.4), (3.18) and (3.16) the quantity (xi - g i )  ui = 0 on I? and a t  infinity. 
Since ui is harmonic and solenoidal, (xi - gi) ui is also harmonic. Hence 

(xi-gi)ui = 0 in D. 
We now choose new co-ordinates with the origin at gi and with the x3 axis 

in the direction of the vector ci = Qi. Then gi = 0, L$ = 0, Ql = Q2 = 0 and we 

must have UI = - hx2, u2 = hxl, a3 = 0, (3.20) 

where h is a scalar function. The divergence condition shows that x2 h,  - x1 h,  = 0. 
I f  we introduce cylindrical co-ordinates (p,  0, z ) ,  this condition becomes ahla0 = 0, 
so that h = h(p, 2 ) .  The fact that the ui are harmonic and the boundary conditions 
show that h is the solution of boundary-value problem 

h =  Q3 on I?, h+O a t  co. 
(3.21) 

h,,,+(3/P)h,,+h,, = 0, 
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If 0, $. 0,  the maximum principle shows that Ihl < lQ,l in D. If there were a 
point (po, O,, zo) on 2 and a point (po, O,, xo) in D, then we would have 

h@o, 20) = 0 3  and also Ih(p0, zo) I < I 031. 
This contradiction shows that B must be axially symmetric about the x, axis. 

Conversely, if B is axially symmetric about the x, axis and if h is the solution of 
the problem (3.21), then the vector field (3.20) is harmonic and solves the problem 
(2.3) and (2.4) with p = 0 and eij = = R, = R2 = 0. Thus the theorem is 
proved. 

We shall discuss the various submatrices of M and (3.14) in the following 
sections. 

4. The diagonal tensors 
If we choose 0, = eij = 0, the inequality (3.5) becomes 

A,U,U, < AZU,U,. (4.1) 

It follows that all the diagonal elements, principal minors and eigenvalues of the 
matrix A 3  -A, are non-negative. For example, if B and B* have axial symmetry 
about the x, axis, so that both A, and A$ are of the form (3.12), we find that 

a, < a:, a, < a:. (4.2) 

(A, - 4nCb’ij) Ui Uj > 0, (4.3) 

which becomes a, > 4nC, a, > 4nC (4.4) 

Moreover, we find from (3.14) and theorem 2 that, if UiUi > 0,  then 

when B is axially symmetric. Both (4.1) and (4.3) were recently obtained by 
Weinberger (1972) in terms of the settling speed. Weinberger also indicated that 
(4.4) is sharp in the sense that for a spheroid with a symmetry axis of length 1 
and perpendicular axis of length l/re the ratio a1/4nC approaches unity as re -+ m 
(re is the aspect ratio). 

Consider next the case in which 

= 0, eij = 0 (4.5) 

(4.6) 

for all i andj. Inequality (3.5) then reduces to the inequality 

Bii Qi Qj < B,*i Ri Inj 
for the rotation tensor. Thus, as with the translation tensor, we find that the 
diagonal elements, principal minors and eigenvalues of B$ - Bij are non-negative. 
In  particular for bodies of revolution we obtain 

(4.7) 

where b, and b, are defined in (2.12). Also, (3.14) and theorem 2 yield the in- 
equality 

with equality for Qi $. 0 if and only if B is axially symmetric, the origin is on 
the axis of symmetry and Ri is parallel to this axis. 

[Bij - hC(gk gk - gi gj) - (Pkk + 2 1.B 1 ) b’ij f&] 0, 2 0, (4.8) 
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If B is axially symmetric and the origin is on the axis of symmetry, then 

gi = SPi (4.9) 

and the polarization tensor is of the form 

p z j  = + b - 3  -7ll)pipj, (4.10) 

where pi is a unit vector along the axis of revolution. We then obtain the estimates 

b, = 2(T1+ IBI) (4.11) 

and b, 2 4nCg2+nl+n3+2]B],  (4.12) 

with equality if and only if B is a sphere centred at the origin. 

so that 
It follows from (4.8) that the trace of the coefficient matrix is non-negative, 

Bii 2 8nCgigi+2P,,+6]BI, (4.13) 

with equality if and only if B is a sphere centred a t  the origin. The isoperimetric 
inequality 

C 2 (3]B1/4n)i 

has been obtained by PoincarB, Faber and Szego (see Polya & Szego 1951). The 
isoperimetric inequality 

pii 2 61BI 

was established by Schiffer (1957). Substituting these inequalities in (4.13), we 
find that 

+Bii 2 61BI +($n)%(2]BI)*gigi 2 61BI. (4.14) 

Equality is obtained when B is a sphere and the origin is at its centre. We may 
therefore state (4.14) as an isoperimetric inequality: among all bodies of given 
volume the value of the average rotational resistance attains its minimum only 
when the body is a sphere centred at  the origin. 

Next, if we divide the inequality (4.12) by (4.11), we obtain the lower bound 

(4.15) 

with equality only for a sphere centred at  the origin. It follows that 

b l l h  ’ 4 
for all axially symmetric bodies. It is not known what the greatest lower bound 
of the ratio b,/b, is, but bl/b, = 1 for a flat disk (see for example Happel & Brenner 
1965, p. 173). The minimum value of this ratio among oblate spheroids is 0.7961, 
which is attained when the ratio of the principal axes is 0.408. 

The third interesting tensor in the diagonal of the shearing matrix M is the 
tensor Ciiki. It describes the stresslet imposed by a stationary body on a fluid 
experiencing a linear deformation at  infinity, and the resulting rate of dissipation. 
When Ui = Qi = 0 the inequality (3.5) becomes 

eij C&, ekl 2 eij GIijkl ekl. (4.16) 
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Since Cijkl may be thought of as a matrix whose indices are the pairs i j  and kl, the 
inequality (4.16) shows that this matrix has the same monotonicity properties 
as Aii and Bij.  

We now consider a body B which is axially symmetric about the x3 axis, so 
that (2.12) holds with pi = 8,. We then see from (2.12) that for those eij for 
which eij = eii and eii = 0 we have 

Ciikleijekl = c l e ~ 3 + ~ c 2 [ ( e 1 ~ - e 2 2 ) 2 + 4 e ~ 2 ]  + ~ ~ ( e ; ~ + e ; ~ ) .  (4.17) 

Particular ambient flows provide inequalities for the constants appearing in 
(4.17). For example, the flow with 

yields (4.18) 

Similarly, for an ambient field in which eij = Sil Sj3 + Si3 Sj1 we obtain 

c3 0 z c3. (4.19) 

Finally, by considering the axisymmetric extensional flow eij = Sij - 3Si3aj3 at 
infinity, we find that 

c; > cl. (4.20) 

A lower bound for C,,, for a body of arbitrary shape involving the body’s 
capacity and polarization tensor is obtained from (3.14) by setting Ui = Qi = 0. 
We find that the symmetric matrix C,,, - Gijkl, where 

A 

q j ,  = t(4nCgjg +q1+ I B l 8 j l ) ~ i k  

+ t (477Qi 9, + ez + I B I SiZ) 4, 
+ i (4ncgj  9, + P , / c  + I B I Sj,) ail 

+t(4.nQgigk+Pik+ IBI8ik)  Sjl 

-&(4ncgksl+Pk1+ l~I&z)8ij 

+H4nCgmgm + Pmm + 31BI 8ijSkz, 

- $ (4nCgi gj + Pii + 1 B 1 Si i )  

is positive definite. For an axially symmetric body we then find that, in terms 
of the components of gi and Ej, defined in (4.9) and (4.10), 

c2 > n 1 + p \ ,  

c3 > 4nCg2+n1+n3+2[B[,  

c1 > 4nCg2 + +(nl + 2n3 + 3 1 ~ 1 ) .  

(4.21) 

(4.22) 

(4.23) 

Quantitative comparisons between these estimates and some exact results are 
shown in table 1 and figure I .  Table I gives the ratios of c2, c3 and c1 to their corre- 
sponding estimated values from (4.21)-(4.23) for three types of spheroids: 
a thin oblate spheroid (re < I) ,  a sphere (re = 1) and a slender prolate spheroid 
(re + I)  (re is the ratio of the length of the axis of revolution to the length of the 
axis perpendicular to it). The c’s were calculated from Jeffery’s (1922) solution. 
The second example, shown in figure I,  compares the calculated values of c2,  c3 
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Thin oblate 
spheroid Sphere 
r e e l  r , = l  

Slender prolate spheroid 
r, S- 1 

TABLE 1. The ratio of c2, c3 and c1 to their corresponding estimates from (4.21), (4.22) and 
(4.23) for spheroids. r, is the ratio of the length of the axis of revolution to the length of the 
axis perpendicular to it. cl, c3 and g are calculated relative to the centroid. 

10 

8 

4 

2 

1 I I I I 1 
10 

8 

2 

0 0-2 0-4 0.6 0.8 I .o 
Size ratio 

FIG~RE 1. Comparison of calculated values of c2, c3 and c1 for pair of tangential spheres (full 
lines) with lower bounds obtained from, respectively, (4.21), (4.22) and (4.23) (dotted lines) 
and from, respectively, (4.18), (4.19) and (4.20) (dashed lines) using the larger sphere of 
radius a as the largest contained body. 
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and c, for pairs of tangential spheres (Nir & Acrivos 1973) with lower bounds 
obtained on the basis of (4.21)-(4.23) and by means of the monotonicity property 
stated in (4.18)-(4.20), with the larger sphere taken as the largest containedbody. 
The polarization tensors for both table 1 and figure 1 are quoted from Schiffer 
& Szego (1949) and the centre of the equilibrium charge distribution on the sur- 
face of tangential spheres is stated elsewhere (Nir 1973). 

It can be seen that the worst estimates from (4.22) and (4.23) are obtained for 
the sphere. However, (4.23) is sharp in the sense that for a prolate spheroid the 
ratio 

approaches unity as re 3 00. Furthermore, it is evident from figure 1 that, as 
would be expected in view of the results in table 1, the monotonicity inequality 
leads to better bounds for spheres and nearly spherical bodies. For tangential 
spheres of almost equal size, however, the monotonicity bounds become inferior 
to those obtained from the polarization tensor. 

c , / [ m - ,  + 2n3 + 3 1 ~ 1 )  + 4 m 2 1  

5. The coupling tensors and the free-suspension coefficients 
The fact that the determinants of the principal minors of a positive semi- 

definite matrix are non-negative allows us to obtain, from theorem 1 and (3.14), 
inequalities involving the off-diagonal matrices Dii, Qiik and Such in- 
equalities will, however, also involve at  least two diagonal elements. 

For example, if B is axially symmetric about the x, axis, we find from theorem 2 
that (d, - 4nCg)2 < [al - 4nC] [b, - 4nCg2 - n-, - n3 - 21 BI]. 

(Here a,, b, and d, are defined in (2.12) and g, n, and n-, in (4.9) and (4.10).) This 
inequality is better than the well-known inequality d: < a, b, (see for example 
Happel & Brenner 1965, p. 178), which follows from the positive definiteness of 
M. The inequality (5.1) gives useful bounds for d, if one has good upper bounds 
for the diagonal elements a, and b,. By similar reasoning we see from theorem 1 
that, if B* contains B, then 

(5-1) 

(d,* - d,)2 6 (a: -a,) (b: - b,). (5 .2 )  

Similar inequalities hold for the elements of Qiik and Rljk. Thus, if B is axially 
symmetric about the x3 axis and we take the principal minor of the rows and 
columns which correspond to U, and e33, we find the inequalities 

(5.3) 

(5.4) 

(q3+4nCg)2 6 $(a3-4nC) (c1-n3-&rl-#~B[ -4nCg2) 

(q,* - %I2 =G (4 - a3) (c,* - c1) and 

when B* contains B. Since the constant p in (2.14) is equal to q3/a,, bounds for 
q3 and a3 give bounds for j3. 

Similarly, if we consider the minor which comes from the rows and columns 
corresponding to U, and e13, we find that 

(4, - 4nCg)2 < $(a, - 4nC) (c, - n1 - n3 - 2]B]  - 4n-Cg2) 

(d - q1I2 6 a c 4  - a,) (c,* - c3) 

(5.5) 

(5.6) and 
48 F L M  68 
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when B* contains B, while the principal minor corresponding to Q2 and e13 yieIds 

(r, - n3 + n1 + 4nC92)2 < +(bl-7rl - n3- 2(BI - 4nCg2) (c3- n, - n3- 21BI - 47rCg2) 
(5.7) 

and (5.8) 
when B* contains B.] 

The inequalities (5.1), (5.2) and (5.5)-(5.8) can be used to approximate d,, 
q1 and r,. Since the methods of $ 4  serve to approximate a, and b,, we can in prin- 
ciple approximate all the quantities that occur in the definitions (2.15) and (2.17) 
of y and b .  However, since such inequalities also involve at least two diagonal 
elements, their use in approximating the free-suspension coefficients ,5, y and b 
through (2.15)-(2.17) may prove inefficient. 

During the course of this work Avinoam Nir and Andreas Acrivos were sup- 
ported in part by National Science Foundation grant GK-36515 to Stanford 
University, and H. F. Weinberger by National Science Foundation grants 

GP-3 5543 t o  Stanford University and GP-3766OX to the University of Minne- 
sota. 
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